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Abstract
We show that the main features of the cuprate superconductor phase diagram
can be derived considering the disorder as a key property of these materials.
Our basic point is that the high pseudogap line is an onset of phase separation
which generates compounds made up of regions with distinct doping levels.
We calculate how this continuous temperature dependent phase separation
process occurs in high critical temperature superconductors (HTSC) using the
Cahn–Hilliard approach, originally applied to study alloys. Since the level
of phase separation varies for different cuprates, it is possible that different
systems with average doping level pm exhibit different degrees of charge and
spin segregation. Calculations on inhomogeneous charge distributions in the
form of stripes on finite clusters performed by the Bogoliubov–de Gennes
superconducting approach yield good agreement between the onset of local
pairing amplitude and the pseudogap temperature T ∗(pm). Assuming that the
local order parameters generated at these clusters have their phase locked, we
can follow how the superconducting phase develops at Tc(pm) by possible
percolation or Josephson coupling.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

After almost 20 years of research, the high critical temperature superconductors (HTSCs) still
remain an unsolved problem [1–3]. All HTSCs have a similar universal complex electronic
phase diagram: the parent (undoped) compound is an antiferromagnetic Mott insulator; the
superconducting phase has a dome shape at low doping and low temperature. The normal
phase has a pseudogap in the underdoped region at low temperatures and a metallic phase at
high temperatures in the overdoped region. Understanding the complexity of such a normal
phase is believed to be essential for solving the mechanism of HTSCs [1].
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Another intriguing fact is the question of the inhomogeneities in these materials; some
families of compounds have a high inhomogeneous electronic structure which displays either
stripe [4], patchwork [5], chequerboard [6], or other forms [7]. On the other hand, depending on
the type of experiment, there are some HTSC materials that appear to be more homogeneous or,
at least, do not display any gross inhomogeneity [8, 9]. It is possible that these distinct features
are due to a phase separation transition that produces different degrees of local hole doping
densities and, consequently, different properties. We have already discussed this possibility
in a previous paper [10] and we now perform more detailed calculations in connection with
several new experimental data.

Recent angle resolved photoemission (ARPES) experiments with improved energy and
momentum resolution [11–14] have distinguished two electronic components in �k-space
associated with the La2−x Srx CuO4 (LSCO) system: a metallic quasi-particle spectral weight
in the (π/2, π/2) nodal direction which increases with hole doping and an insulator-like
spectral weight at the end of the Brillouin zone straight segments in the (π, 0) and (0, π )
antinodal regions which are almost incentive to the doping level. Comparison with the
non-superconducting La2−x−yNdySrx CuO4 system [12], in which static stripes were first
observed [4], demonstrated that the antinodal spectral weight behaviour is compatible with
a quasi-one-dimensional electronic structure where the hole rich stripes behave as one
dimensional metals and the hole poor stripes as insulators. These features demonstrated that
in these compounds there are two aspects of the electronic structure [11–14]. Moreover, the
large shift of the ARPES spectra [11] at the Fermi energy, which is called the leading edge shift
and is interpreted as the superconducting gap, is maximum at the antinodal region. This is an
indication of the d-wave symmetry of the superconducting order parameter, which vanishes in
the nodal but is maximum in the antinodal directions.

Another technique which has been refined and revealed new aspects of HTSC is scanning
tunnelling microscopy (STM). It is complementary to ARPES because it probes the differential
conductance or the local superconducting gap � directly on the surface of the compound. New
STM data with great resolution have also revealed strong inhomogeneities in the form of a
patchwork of (nanoscale) local spatial variations of the density of states which is related to the
local superconducting gap [5, 15, 16]. More recently it was possible to distinguish two distinct
behaviours: well defined coherent and ill defined incoherent peaks depending on the exactly
spectra location at a Bi2Sr2CaCu2O8+δ (Bi2212) surface [17–19]. STM experiments have also
detected a regular low energy chequerboard order in the electronic structure of the Bi2212
family above the superconducting critical temperature (Tc) [21] and at low temperature [20]
and in the NaxCa2−x CuO2Cl2 [6].

A third important set of experiments to describe the HTSC phase diagram is the tunnelling
current [22–24]. New techniques have recently shown the existence of two energy gaps which
behaved differently under an applied magnetic field [25–27]. Tunnelling experiments using
superconductor–insulator–superconductor (SIS) with insulator layers with various sizes and
resistivities have also shown distinct sets of energy scales and have also led to the idea that the
richness of the phase diagram as a function of doping may be due to charge inhomogeneities
and charge clusters of different sizes in the Cu–O planes [28, 29].

The ARPES and STM experiments are surface probes, which may suggest that the
inhomogeneities may be a surface effect, but charge disorders were also detected by bulk
experiments, like the stripe phase in materials similar to LSCO [4, 30] and also local
variations in the charge [31]. Another bulk sensitive experiment is nuclear magnetic and
quadrupole resonance (NMR and NQR) which have provided ample evidence for spatial charge
inhomogeneity in the CuO2 planes [32–34]. Similarly, Singer et al [33] measured a distribution
of T1 over the Cu NQR spectrum in bulk LSCO, which can be attributed to a distribution of
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holes p with a half width of �p/p ≈ 0.5. More recently, NMR results on La1.8−xEu0.2SrCuO4

were interpreted as evidence for a spatially inhomogeneous charge distribution in a system
where the spin fluctuations are suppressed [35]. This new result is a strong indication that the
charge disorder may be due to a phase separation transition.

These unusual features of cuprates led to theoretical proposals that phase separation is
essential to understand their physics [36, 37]. In fact, phase segregation has been observed in
La2CuO4+δ by x-ray and transport measurements [38, 39]. They have measured a spinodal
phase segregation into an oxygen-rich (or hole-rich) metallic phase and an oxygen-poor
antiferromagnetic phase above T = 220 K. Below this temperature the mobility of the
interstitial oxygen becomes too low for a further segregation. La2CuO4+δ is the only system
where ion diffusion has been firmly established, although there is evidence of ion diffusion at
room temperature in micro-crystals of the Bi2212 superconductors at a very slow rate [40].

On the other hand, recent NMR studies on YBa2Cu3O6+y (YBCO) have demonstrated
a complete absence of static phase separation or at least an absence of gross
inhomogeneities [8, 9]. In contrast to what was measured in Bi2212 and in LSCO, the
maximum hole doping variation �p found in YBCO was very small [8]. Loram et al [9]
also analysed the specific heat of YBCO and Bi2212 and concluded that there is evidence for a
uniform doping density in these materials.

In this paper we develop the idea of two distinct [41] pseudogaps in which the lower one
is associated with the onset of superconductivity [42]. We then take the upper pseudogap line
as a line of phase separation transition, and introduce a model to make quantitative predictions
through the Cahn–Hilliard (CH) approach [10, 43–45] in section 2. In this way, gross and
weak disordered systems differ only by the degree of mobility or diffusion of the particles
and different systems can belong to the same universality class. In section 3 we use the
Bogoliubov–de Gennes (BdG) local method for the superconducting problem to calculate the
local pairing amplitude in mesoscopic clusters with random, stripes, chequerboard, Gaussian
and other forms of inhomogeneities of the charge density. The results on stripe-like formations
applied to the LSCO system reveal a pseudogap phase characterized by the building up of
superconducting islands or puddles with, as in BCS theory, their phase locked. Consequently,
the superconducting phase is reached at low temperatures by the possible percolation or
Josephson coupling of these islands [46–48]. The details of these calculations are discussed
in section 2 and 3 with their consequences for HTSC in section 4.

2. The CH approach

Our main assumption is that the high pseudogap line, which we call Tps(pm), which falls to
zero near pm ≈ 0.20, and which is independent of the superconducting phase [3, 49], is the
onset of the phase separation. Timusk and Sttat called this line a crossover boundary [2] and,
due to their temperatures, it is clearly distinct from the lower pseudogap [42]. Thus, within this
assumption, a given compound starts to phase separate at Tps(pm) and this process increases
continuously as the temperature goes down.

Therefore the phase separation in HTSC is a dynamical problem and depends strongly
on the initial conditions, on the temperature and how the system is quenched below the phase
separation line, the mobility of holes and ions, and so on. However, the information on most of
these processes is not available and one has to work out the phase separation process backwards,
that is, to use parameters which yield the final configurations of stripe, chequerboard, or other
patterns. An appropriate framework to study such a process mathematically is by the CH
theory [43], which we have already applied to the cuprates [10].
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The CH approach to phase separation was conceived to describe the continuous transition
of binary alloys, but, in principle, can be applied to any system that undergoes this type of
continuous transition [43]. As we can infer from the stripe phases, in a compound with an
average pm = 1/8 hole per copper atom, the antiferromagnetic insulating phase has stripes of
nearly zero holes per copper atom alternating with the metallic ones with larger values of the
local charge density. As we discuss below, this behaviour can be well described by the CH
theory.

Starting with small fluctuations of the local charge density, the CH non-linear differential
equation which describes the process of phase separation with the time t at a temperature T
below the phase separation transition temperature Tps can be written as [10, 43]

∂u

∂ t
= −M∇2(ε2∇2u + A2(T )u − B2u3), (1)

where u is the order parameter associated with the local variation p(�x) in the average number
of holes per copper atom pm at a given point �x , defined as u(�x) ≡ p(�x)− pm, and we expected
u(�x) ≈ 0 above and near Tps. ε and B are fixed parameters, the parameter A(T ) depends
on the temperature T and B and the ratio ±A(T )/B yields the two equilibrium densities.
M is the mobility of the particles and dictates the timescale of the phase separation process.
Compounds with larger values of M phase separate easier than those with smaller values,
and, therefore, it will differentiate among the different HTSC families. As the temperature
goes down below Tps(pm), the two equilibrium values of the order parameter (or equilibrium
densities) spread apart from one another and the energy barrier between the two equilibrium
phases Eg(T, pm) also increases. Eg = A4(T )/B is proportional to (Tps − T )2 and here we
introduce the completely new idea that Eg, which starts at Tps(pm), can be identified with the
upper pseudogap signal [10, 45], in agreement with several different experiments [3, 42]. A
discussion of the details of the convergence criteria, boundary conditions and dependence on
the initial parameters in one, two or three dimensions can be found in our previous work [44].
However, for completeness, we noticed that values of A(T )/B ≈ 1 yield phase separation
with granular patterns, and smaller values of this ratio yield stripe-like patterns [44]. Since,
as we have already mentioned, stripe-like patterns were discovered in LSCO and related
systems, in order to study the properties of these cuprates we performed our calculations with
A(T )/B = 1/5 and 1/8 in the low temperature range (below T ∗(pm)).

In figures 1 and 2 we display the mapping of the density order parameter for a system
with pm = 1/8 and with a maximum �p = 1/8. Both figures have a small initial density
fluctuation of �p = 0.02 around pm at t = 0, but figure 1 has a more random initial condition
than the more symmetric case of figure 2. We notice that for larger times they are almost
indistinguishable, but for shorter times they are very different. It is interesting that, despite the
large time evolution, the system keeps very symmetric patterns. In figure 2(a) we can see a
mixture of chequerboard and stripe formations which tend to evolve into a pure stripe phase
(figure 2(b)). As the phase separation process continues, the systems evolve to a complete
phase separation and the early time symmetric patterns are lost. This degree of charge phase
separation can be reached very fast if the holes have large mobility M . This finding enables
us to speculate that the measured differences among the HTSC families are due to different
values of M . By the same token, the differences found in compounds of a given family can be
attributed to differences in the quenched process, that is, the rate of cooling below Tps(pm).

Another possible way to follow the whole phase separation process is to analyse the charge
histogram evolution with time. Thus, in figure 3 we show the phase separation progress in terms
of the histograms of the density order parameter. One can see the tendency, as the time flows,
to evolve into a bimodal distribution around the two equilibrium conditions p(i)± = ±A/B .
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Figure 1. The mapping of the density order parameter during the process of phase separation. The
initial (t = 0) order parameter is given by small random variations around u = 0. The order of the
figures is (a) t = 400 time steps, (b) t = 800, (c) t = 1000 and (d) t = 4000.

Figure 2. The same time evolution as figure 1 but with a more symmetric initial condition around
u = 0. The order of the figures is (a) t = 400 time steps, (b) t = 1000, (c) t = 4000 and
(d) t = 20 000. For shorter times, the phase separation process develops symmetry patterns which
are lost for larger times.

Thus, systems with a high mobility will probably reach a state where there are two types of
regions with high and low densities. This resembles the stripe phase in the LSCO system.

Therefore, taking the large pseudogap line [3, 10, 49] as the phase separation temperature
Tps, it is possible to infer that the different HTSCs unfold in different patterns as described by
figures 1 and 2. As a consequence, since underdoped compounds have a very high Tps, they
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Figure 3. The time evolution histogram of the density order parameter of figure 1 with a symmetric
initial condition around u = 0.

phase separate into a bimodal distribution faster than the optimally and overdoped compounds.
The NQR results of Singer et al [33] suggest a bimodal distribution of charge in the LSCO
system.

Thus, in order to calculate the local critical temperature for such an inhomogeneous
system, we need to use the Bogoliubov–de Gennes theory. This will be outlined in the next
section.

3. The local superconducting calculations

Here we discuss the main points of a local superconducting calculation to deal with the effect of
the charge disorder which follows directly from the CH patterns described above. The general
way to perform this, in a system without spatial invariance, is through the BdG mean-field
theory, which has been largely used in the HTSC problem [50–53]. The important and novel
point introduced here is that we take the initial charge distribution derived from the CH results.
The procedure starts with the extend Hubbard Hamiltonian

H = −
∑

〈〈i j〉〉σ
ti j c

†
iσ c jσ +

∑

iσ

(μi)niσ + U
∑

i

ni↑ni↓ + V

2

∑

〈i j〉σσ ′
niσ n jσ ′ (2)

where c†
iσ (ciσ ) is the usual fermionic creation (annihilation) operator at site xi , spin σ {↑↓},

and niσ = c†
iσ ciσ . ti j is the hopping between sites i and j . Here we have implemented

in our calculations hopping values up to fifth neighbours derived from the ARPES data for
YBCO [54]. In their notation, the hopping parameters are t ≡ t1 = 0.225 eV, t2/t1 = −0.70,
t3/t1 = 0.25, t4/t1 = 0.08, t5/t1 = −0.08. U = 1.1t is the on-site and V = −0.6t is the
nearest neighbour phenomenological interaction. μi is the local chemical potential. All the
calculations presented here use the same set of parameters, and clusters with periodic boundary
conditions. (

K �

�∗ −K ∗

) (
un(xi)

vn(xi)

)
= En

(
un(xi)

vn(xi)

)
. (3)
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0 196
0

p(i)=0 X 0.0 pm 2pm–X pm

Figure 4. The low temperature stripe profile of a 14 × 14 cluster with 196 sites used to model a
compound of average doping level of pm. The BdG superconducting calculations are made on these
clusters and 0 � X � 0.06 measure deviations from a bimodal charge distribution.

These BdG equations are solved self-consistently for En � 0 together with the pairing
amplitude [50]

�U (xi) = −U
∑

n

un(xi)v
∗
n(xi ) tanh

En

2kBT
, (4)

�δ(xi) = − V

2

∑

n

[un(xi)v
∗
n(xi + δ) + v∗

n (xi)un(xi + δ)] tanh
En

2kBT
, (5)

and the hole density is given by

p(xi) = 1 − 2
∑

n

[|un(xi )|2 fn + |vn(xi)|2(1 − fn)], (6)

where fn is the Fermi function.
We have performed self-consistent calculations with equations (5) and (6) on clusters up

to 24 × 24 sites with homogeneous and inhomogeneous local doping. The major difference
from previous BdG calculations is that, instead of an impurity potential [51, 52] to account for
the charge disorder, we have fixed the initial local charge densities throughout the calculations
in order to take into account the results of the CH approach and also in agreement with the
data on stripe formation [4, 30]. This novel procedure is necessary to study the formation
of the superconducting regions on the local density patterns which results from the phase
separation process as shown, for instance, in figures 1 and 2. In the next section, we perform the
superconducting calculations with d-wave symmetry for clusters with disordered local charge.

4. Results

We perform the BdG calculations on clusters of uniform density ranging from zero to pm = 0.3
with parameters which make the values of Tc(pm) vanish near these limits, as listed below
equation (2). Then we perform calculations with inhomogeneous clusters and concentrate on
the stripe geometry which occurs in LSCO [4]. We connect the stripe phase with the above CH
results through a scheme displayed in figure 4, where the value of X is related to the degree
of the phase separation. Due to the large values of Tps(pm) at the strong underdoped regime,
the level of phase separation is maximum at low temperatures, and X = 0 for doping values of
pm � 0.05. For 0.12 � pm � 0.19 the values of X may build up to 0.05. Notice that when
X = 0 the charge distribution is a bimodal with the system divided into two distinct regions;
insulator with p(i) ≈ 0.0 and metallic with p(i) ≈ 2pm.

In this case the metallic regions are in the limit of percolation [55], but for X = 0.04 or
bigger, despite the insulator regions present, the metallic character dominates over the entire
system. This scheme is an approximate way to deal with the phase separation which leads to
the stripe charge configuration of real systems.

Thus, the goal is to study the local pairing amplitude at a site xi or simply ‘i ’ as a function
of temperature �(i, T ) on clusters with charge stripes. Following the values of �(i, T ) it is
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Figure 5. The temperature evolution of the local pairing amplitude �(i, T ) (in units of eV) for
systems with stripe disorder and average doping level of pm = 0.16 with T ∗ ≈ 60 K and Tc ≈ 42 K.
i here represents the sites of a 14 × 14 = 196 cluster.

possible to estimate Tc(i) and to draw many interesting conclusions for the phase diagram. To
explain our approach for an LSCO system with density inhomogeneity in stripe form, we will
analyse the results for a cluster with pm = 0.16 in a 14×14 cluster as shown in figure 5. At high
temperatures but below Tps(pm = 0.16) ≈ 250 K (this estimate is from figure 11 of [3]), the
system is a disordered metal going through a continuous phase separation as the temperature is
decreased. Below this temperature, say for T � 200 K, due to the continuous phase separation,
a (LSCO) compound may be composed of six stripes with local charge density p(i) given by
0.0–0.05–0.0–0.16–(0.32–0.05)–0.16. The low density regions are pictured on the left and the
high density are on the right of the cluster (see figure 5) and one follows the other by periodic
boundary conditions. These two markedly different regions provided an explanation for the
dual behaviour detected by several ARPES measurements [11–14]. At high temperatures there
are no superconducting regions in the sample, but at T ∗ � 60 K, as we can see in figure 5, some
local superconducting amplitudes arise, forming superconducting islands in the most dense or
metallic region. Thus this temperature (T ∗ ≈ 60 K) is the onset of pair formation and we take it
as the beginning of the pseudogap phase. Notice however that, at this (T ∗ ≈ 60 K) temperature,
these superconducting regions are weakly isolated from one another in the disordered metallic
matrix [46–48] because the amplitudes of pairing (�) are very small, and non-vanishing only
in the core of the metallic region as seen in figure 5. This figure also shows that upon cooling
down the superconducting regions become more robust as the �(i, T ) increases and new ones
are built up where there are hole fluctuations (at X in figure 4) in the lightly doped regions.
The induced pairing amplitude in the low density regions (at X ) is possibly the origin of the
superconducting phase through the percolation of the local superconducting islands with their
phase locked, which favour the Josephson coupling. One can see in figure 5 that around 42 K
the pairing amplitudes develop also at X = p(i) = 0.05, but for the pm = 0.06 sample they
develop even at X = p(i) = 0.01 (see figure 6) and thus the superconducting regions cover
more than 50% of the CuO2 plane. Consequently they percolate [55], and the whole system is
able to hold a current without dissipation, that is, Tc(pm = 0.16) ≈ 42 K is the superconducting
critical temperature for this compound.

Notice that the assumption that the order parameter has a rigid phase, as in a BCS
superconductor, also has experimental support [56], although it is against the phase disordered
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Figure 6. The temperature evolution of the local pairing amplitude �(i, T ) (in units of eV) for
systems with stripe charges with average doping level ranging from pm = 0.03 to 0.12. The onset
temperature (Tc) of percolation is shown in every panel.

scenario which lately has gained increased theoretical interest [7, 57]. It also makes possible
the superconducting phase to be achieved by the Josephson coupling among the many local
superconducting clusters.

We now apply this analysis to a series of compounds in order to show how the main
features of the whole LSCO phase diagram can be derived. Our results are shown in figure 6
for mostly underdoped samples and in figure 7 for larger average doping values. For very
lightly doped compounds like pm = 0.03, due to the high values of Tps(pm), there are stripes
of only p(i) = 0.0 and p(i) = 0.06 separated by a small boundary with p(i) = 0.03. We
considered a region metallic if it has a density of p(i) � 0.04–0.05; since the doped regions
with p(i) = 0.06 occupy less than half the system, which is lower than the two dimensional
percolation limit of 50–60% [55], this compound is not a metal, although it has a metallic
behaviour at high temperatures [58]. Such behaviour can be explained as due to the holes which
can tunnel over the dense p(i) = 0.06 stripe regions. This tunnelling can also be the origin
of the zero temperature pseudo-gap (ZTPG) detected by STM [18–20]. For these underdoped
compounds, the pairing amplitude develops strictly in the metallic or heavily doped regions
(see the top panel of figure 7), and the superconducting islands occupy less than 50% of the
available area, which is below the percolation limit.

For a compound with pm = 0.06, Tps is still very high; the density profile is characterized
by a very small charge fluctuations around a bimodal distribution given by X = 0.001. The
stripe regions have densities given by p(i) = 0.0–0.001–0.0–0.06–0.119–0.06. This system
can be considered at the metallic limit, which is 50% of the sites with p(i) � 0.04. We see that
the onset of superconducting islands is at T ∗ = 100 K and the percolation threshold occurs near
Tc = 15 K, specially due to the already mentioned unexpected pairing amplitudes induced at
the low density sites with p(i) = 0.001 (see figure 6). Thus for temperatures between T = 15
and 100 K the system is a poor metal with insulator, metallic and superconducting regions.
The presence of these superconducting islands in many compounds is verified by several
different experiments. Perhaps the most clear demonstration of these static superconducting
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Figure 7. The temperature evolution of the local pairing amplitude �(i, T ) (in units of eV) for
systems with stripe disorder with average doping level ranging from pm = 0.14 to 0.22. Notice
that the pm = 0.22 compound does not undergo a phase separation transition and its local density
fluctuates around pm = 0.22.

regions is through the tunnelling data [22, 28, 29], which have seen a (superconducting) gap
well above Tc. More recently, measurements of the Nernst effect [59] also demonstrated the
presence of the local superconducting regions above Tc(pm) although it was interpreted as due
to superconducting fluctuations instead of the static cluster considered here. For compounds
with an average doping larger than pm = 0.06, we notice that the onset of superconductivity
T ∗ decreases almost steadily, while the onset of percolation Tc goes through a maximum at the
optimum doping pm = 0.16. The reason for this behaviour in our calculation is the deviations
from the bimodal distribution (given by the increase of the phase separation parameter X as in
figure 4).

In the figure 7 we can see that the phase separation process and the local superconducting
calculations follow a similar pattern up to pm = 0.20. Following current trends [3, 42, 49], we
assume that the phase separation ends at pm ≈ 0.20 and, for heavier doped compounds, the
charge disorder is very weak like a small fluctuation around the average value pm, similar to
the charge distribution shown in figure 3(a). This is the same kind of charge fluctuation which
occurs above the phase separation transition temperature Tps. Consequently, the compound
with pm = 0.22 differs greatly from the other compounds shown in figure 7, and it has only
local densities p(i) ≈ 0.22, which is in the metallic range. The local pairing amplitudes
�(i, T ) are built in the whole system at T = 30 K and not in islands or droplets. If we adhere
to the assumption that T ∗ is the onset of superconducting correlations, we see that, for these
pm � 0.20 overdoped samples, T ∗ merges into Tc. The other important consequence is that
the normal phase is much more homogeneous, without insulating and superconducting regions,
than the pm �0.20 compounds. This is seen experimentally through the Fermi liquid behaviour
of many measurements carried in the heavily overdoped regime together with the absence of a
pseudogap [2, 7].

In figure 8 we used the calculated local �(i, T ) on each compound to derive the LSCO
phase diagram, to wit, the onset of superconducting temperature T ∗(pm) (squares) and the
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Figure 8. The onset of superconducting island temperature T ∗(pm) and the possible percolation
temperature Tc(pm) taken from figures 7 and 6. The phase separation (dashed) line or upper
pseudogap is also shown [3, 49].

percolation temperature Tc(pm) (circles) as a function of pm, as derived from figures 7 and 6.
The values of T ∗(pm) are in good agreement with the measurements attributed to the lower
pseudogap line, which is usually related to the onset of a superconducting property [2, 3, 42],
for instance the tunnelling results [22, 29] and the Nernst effect [59]. The values of
Tc(pm) are also in good quantitative agreement with the experimental superconducting phase
boundary [2, 3, 59].

We have also taken the larger �(i, T = 0) for each compound from the calculations similar
to those shown in figures 6 and 7 and plotted in figure 9. These maximum pairing amplitudes
for each pm at low temperature (�0(pm)) are in reasonable agreement with the ARPES zero
temperature leading edge shift or the maximum magnitude of the superconducting gap [14].
The pairing amplitude and the superconducting gap are equal for a homogeneous system but, as
shown by Ghosal et al [52], their difference increases with the disorder. In our two component
system the maximum pairing amplitude develops inside the metallic region where the sites
have a fairly homogeneous density, that is, p(i) ≈ 2pm. Since the opening of this maximum
�(i, T = 0) is associated with the onset of superconductivity or pseudogap temperature
T ∗(pm), it is reasonable to take it equal to the maximum zero temperature superconducting
gap �0(pm). In this figure 9, to study also the effect of the disorder in our calculations, we
have shown the values of �0(pm) for homogeneous compounds (which is in this case equal
the superconducting gap). We see that the disorder increases the average zero temperature
gap dramatically at low doping and in a weaker way in the far overdoped regions. The
discrepancies around optimally doped samples between the experimental leading edge values
and our calculations are likely to be due to our approximate stripe configurations on small
clusters.

It is important to notice that this phase separation scheme is able to capture the very curious
dual behaviour of the electronic structure in LSCO systems [12]. At the lightly doped regime,
due to the high values of the phase separation energy barrier Eg(T, pm), the charges move
preferably along the high density stripes, and the Cooper pairs are formed along them, as
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Figure 9. The maximum pairing amplitude �0(pm) as a function of the doping level. The diamond
points are for a cluster with uniform density. The squares are for an inhomogeneous cluster
following to the CH results. The circles are the experimental leading edge gap from [14].

demonstrated in figures 6 and 7 by the calculated �(i, T = 0 K). Consequently, with a k-
space probe, the superconducting gaps for lightly doped samples are measured mainly in the
(π, 0) and (0, π) antinodal regions and the spectral weight segments are entirely near these
antinodal regions. This behaviour is expected for 1D stripes [12] and the measured values of
the zero temperature leading edge as a function of pm can be reasonably reproduced by the
values of �0(pm), as shown in figure 9.

Since by assumption Eg(T, pm) is closely related to the high pseudogap and, therefore,
decreases rapidly with pm, it is easier for the holes in compounds near optimally doped than
underdoped ones to tunnel over among the high and low doping stripes, yielding a 2D character
of these systems. Thus as pm increases, the samples tend to change continuously from 1D to
a 2D metallic behaviour and this is detected by the increase of the spectral weight near the
Fermi surface along the [1,1] nodal direction [12]. Another evidence of the charge tunnelling
between different stripes is the presence of the incoherent ZTPG measured on the surface of
Bi2212 compounds [18, 19], which should scale with the energy barrier Eg(pm, T ). The ZTPG
are more frequently than the superconducting gap in the underdoped region and disappear near
pm = 0.19 [18–20]. Evidence of these two types of gaps in HTSC compounds came also from
tunnelling experiments carried out with different resistances [28, 29].

5. Conclusions

We have worked out a complete scenario for HTSC and provided an interpretation for the
upper and lower pseudogap lines and also for the superconducting phase. Taking the upper
pseudogap as the phase separation temperature, we have calculated the order parameter local
pairing amplitudes �(i, T ), which, as in BCS, are assumed to have their phase locked, and the
superconducting phase is reached probably by percolation or Josephson coupling at Tc(pm). In
this way, we derived the phase diagram from the onset of �(i, T ), that is T ∗(pm) and Tc(pm)

for the LSCO family. Although the process of phase separation varies continuously with the
temperature and depends on the sample preparation, for simplicity we use in our calculations
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only the low temperature static configuration. Despite this simplification, the method is quite
general, and to demonstrate it, we reproduced results in good agreement with the LSCO series.

The many values of �(i, T ) at different locations of a single compound, assumed to
be proportional to the local superconducting gap, agree with several recent STM data. The
calculations with the CH stripe configuration have also provided a novel interpretation to
important aspects involving the electronic structure of this type of disorder: the inhomogeneous
electronic dual nature of underdoped LSCO cuprates measured by the straight (1D) segments
near the anti-nodal regions and the spectral weight near the nodal regions where the Fermi
surface develops. The presence of the ZTPG peaks in several Bi2212 compounds, as measured
by high resolution STM data, may be due to the energy barrier between the low and high
density regions (Eg(T, pm)) in a given sample, and therefore, in this view, it is connected to
the phase separation and not to the superconductivity. Our results indicate that the normal
phase of cuprates is a disordered metal (for pm � 0.2) composed by the coexistence of
insulator and metallic regions below the phase separation temperature Tps. These regions are
composed of non-constant hole density droplets or islands with a variety of local Tc(p(i))
at low temperatures. This inhomogeneity is the source of scattering between these non-
uniform regions, Andreev reflection, etc, which is the cause of many non-conventional transport
properties [2, 7]. The study of these normal phase properties will be a matter of future
publication.

Thus, in short, with the combination of the CH phase separation model with the BdG
superconducting theory, we have shown that the phase diagram and some non-conventional
properties of HTSCs receive a coherent interpretation based on a temperature dependent phase
separation.
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